ΑΡΧΕΙΟ-ΔΙΑΛΕΞΗ 3 (course 3)



You can check your understanding of the uptake and transport of water through this
excellent interactive tutorial http://ats.doit.wisc.edu/biology/pb/wr/wr.htm. (this was a functioning link – hopefully it still is.)


Μπορείτε να ελέγξετε την κατανόησή σας σχετικά με την πρόσληψη και τη μεταφορά του νερού μέσω αυτού εξαιρετικού διαδραστικού φροντιστηρίου http://ats.doit.wisc.edu/biology/pb/wr/wr.htm. (αυτός ήταν ένας λειτουργικός σύνδεσμος – ελπίζουμε ότι εξακολουθεί να είναι.)



  • Επίσης, κάποιες ερωτήσεις κατανόησης



Aroca, R., ed (2012). Plant Responses to Drought Stress. (Heidelberg:
Kramer, P.J., and Boyer, J.S. (1995). Water Relations of Plants and
Soils. (San Diego, CA: Academic Press).
Nobel, P.S. (2009). Physicochemical and Environmental Plant Physiology,
4th ed. (Oxford, UK: Academic Press).
Pallardy, S.G. (2008). Physiology of Woody Plants, 3rd ed. (London:
Academic Press).
Tyree, M.T., and Zimmermann, M.H. (2002). Xylem Structure and the
Ascent of Sap, 2nd ed. (Berlin: Springer-Verlag).

Böhm, J. (1893). Capillarität und Saftsteigen. Ber. Dtsch. Bot. Ges. 11:
Brown, H. (2013). The theory of the rise of sap in trees: Some historical
and conceptual remarks. Phys. Perspect. 15: 320–358. doi:10.1007/
Dixon, H.H. (1914). Transpiration and the Ascent of Sap in Plants.
(London: Macmillan).

Dixon, H.H., and Joly, J. (1895). On the ascent of sap. Philos. Trans. R.
Soc. B. 186: 563–576. doi:10.1098/rstb.1895.0012.
Hales, S. (1727). Vegetable Staticks: Or, an Account of Some Statical
Experiments on the Sap in Vegetables. (London: W. and J. Innys).
Kramer, P.J. (1974). Fifty years of progress in water relations research.
Plant Physiol. 54: 463–471. doi: 10.1104/pp.54.4.463.
Mansfield, T.A., Davies, W.J., and Leigh, R.A. (1993). The transpiration

Η ροή του νερού διέπετε από νόμους της φυσικής
Becker, P., Tyree, M.T., and Tsuda, M. (1999). Hydraulic conductances of
angiosperms versus conifers: Similar transport sufficiency at the whole plant
level. Tree Physiol. 19: 445–452. doi:10.1093/treephys/19.7.445.
Davies, W.J. (1986). Transpiration and the water balance of plants. In Plant
Physiology: A Treatise. Vol. IX. Water and Solutes in Plants, F.C. Steward,
J.F. Sutcliffe, and J.E. Dale, eds (New York: Academic Press), pp. 49–154.
Passioura, J.B. (2010) Plant–Water Relations. Encyclopedia of
Life Sciences. (Chichester, UK: John Wiley & Sons). 10.1002/
Pritchard, J. (2001). Turgor Pressure. Encyclopedia of Life Sciences.
(Chichester, UK: John Wiley & Sons). 10.1038/npg.els.0001687 stream. Introduction. Philos. Trans. R. Soc. Lond. B 341: 3–4.
Richter, H., and Cruiziat, P. (2002). A brief history of the study of water
movement in the xylem. http://5e.plantphys.net/article.php?ch=4&id=98.
Scholander, P.F., Hammel, H.T., Hemmingsen, E.A., and Bradstreet,
E.D. (1964). Hydrostatic pressure and osmotic potential in leaves of
mangroves and some other plants. Proc. Natl. Acad. Sci. USA 52:
119–125. doi:10.1073/pnas.52.1.119.
Strasburger, E., Noll, F., Schenck, H., and Schimper, A.F.W. (1903). A
Text-Book of Botany, 2nd English ed. (London: Macmillan).

Gerbeau, P., Amodeo, G., Henzler, T., Santoni, V., Ripoche, P., and
Maurel, C. (2002). The water permeability of Arabidopsis plasma
membrane is regulated by divalent cations and pH. Plant J. 30: 71–81.
Hachez, C., Besserer, A., Chevalier, A.S., and Chaumont, F. (2013).
Insights into plant plasma membrane aquaporin trafficking. Trends
Plant Sci. 18: 344–352. doi:10.1016/j.tplants.2012.12.003.
Heinen, R.B., Ye, Q., and Chaumont, F. (2009). Role of aquaporins in
leaf physiology. J. Exp. Bot. 60: 2971–2985. doi:10.1093/jxb/erp171
Javot, H., and Maurel, C. (2002). The role of aquaporins in root water
uptake. Ann. Bot. 90: 301–313. doi:10.1093/aob/mcf199.
Javot, H., Lauvergeat, V., Santoni, V., Martin-Laurent, F., Güçlü, J.,
Vinh, J., Heyes, J., Franck, K.I., Schäffner, A.R., Bouchez, D., and
Maurel, C. (2003). Role of a single aquaporin isoform in root water
uptake. Plant Cell 15: 509–522. doi:10.1105/tpc.008888.
Kaldenhoff, R., Grote, K., Zhu, J.-J., and Zimmermann, U. (1998).
Significance of plasmalemma aquaporins for water-transport in
Arabidopsis thaliana. Plant J. 14: 121–128. doi:10.1046/j.1365-
Li, G., Santoni, V., and Maurel, C. (2014) Plant aquaporins: Roles in
plant physiology. Biochim Biophys Acta, in press http://www.sciencedirect.
Luu, D.-T., and Maurel, C. (2005). Aquaporins in a challenging
environment: Molecular gears for adjusting plant water status. Plant
Cell Environ. 28: 85–96. doi:10.1111/j.1365-3040.2004.01295.x.

Martinez-Ballesta, M.C., and Carvajal, M. (2014). New challenges in
plant aquaporin biotechnology. Plant Sci. 217–218: 71–77. doi:10.1016/
Maurel, C. (2007). Plant aquaporins: Novel functions and regulation
properties. FEBS Lett. 581: 2227–2236. doi:10.1016/j.febslet.2007.03.021.
Maurel, C., and Chrispeels, M.J. (2001). Aquaporins. A molecular entry
into plant water relations. Plant Physiol. 125: 135–138. doi:10.1104/p.125.1.135.
Maurel, C., Reizer, J., Schroeder, J.I., and Chrispeels, M.J. (1993).
The vacuolar membrane protein g-TIP creates water specific channels
in Xenopus oocytes. EMBO J. 12: 2241–2247.
Maurel, C., Verdoucq, L., Luu, D.-T., and Santoni, V. (2008). Plant
aquaporins: Membrane channels with multiple integrated functions.
Annu. Rev. Plant Biol. 59: 595–624. doi:10.1146/annurev.arplant.59.
Maurel, C., Santoni, V., Luu, D.-T., Wudick, M.M., and Verdoucq, L.
(2009). The cellular dynamics of plant aquaporin expression and
functions. Curr. Opin. Plant Biol. 12: 690–698. doi:10.1016/j.pbi.2009.09.002.
Murata, K., Mitsuoka, K., Hirai, T., Walz, T., Agre, P., Heymann, J.B.,
Engel, A., and Fujiyoshi, Y. (2000). Structural determinants of water
permeation through aquaporin-1. Nature 407: 599–605. doi:10.1038/
Preston, G.M., Carroll, T.P., Guggino, W.B., and Agre, P. (1992).
Appearance of water channels in Xenopus oocytes expressing red
cell CHIP28 protein. Science 256: 385–387. doi:10.1126/science.
Siefritz, F., Tyree, M.T., Lovisolo, C., Schubert, A., and Kaldenhoff,
R. (2002). PIP1 plasma membrane aquaporins in tobacco: From
cellular effects to function in plants. Plant Cell 14: 869–876.
Törnroth-Horsefield, S., Wang, Y., Hedfalk, K., Johanson, U.,
Karlsson, M., Tajkhorshid, E., Neutze, R., and Kjellbom, P.
(2006). Structural mechanism of plant aquaporin gating. Nature 439:
688–694. doi:10.1038/nature04316.
Tournaire-Roux, C., Sutka, M., Javot, H., Gout, E., Gerbeau, P., Luu,
D.-T., Bligny, R., and Maurel, C. (2003). Cytosolic pH regulates root
water transport during anoxic stress through gating of aquaporins.
Nature 425: 393–397. doi:10.1038/nature01853.

Πρόσληψη από τη ρίζα και αγωγιμότητα
Aroca, R., Porcel, R., and Ruiz-Lozano, J.M. (2011). Regulation of root
water uptake under abiotic stress conditions. J. Exp. Bot. 63: 43–57.
Bramley, H., Turner, N.C., Turner, D.W., and Tyerman, S.D. (2009).
Roles of morphology, anatomy, and aquaporins in determining
contrasting hydraulic behavior of roots. Plant Physiol. 150: 348–364.
Carminati, A., and Vetterlein, D. (2013). Plasticity of rhizosphere
hydraulic properties as a key for efficient utilization of scarce resources.
Ann. Bot. 112: 277–290.
Cassab, G.I., Eapen, D., and Campos, M.E. (2013). Root hydrotropism:
An update. Am. J. Bot. 100: 14–24. doi:10.3732/ajb.1200306.
Draye, X., Kim, Y., Lobet, G., and Javaux, M. (2010). Model-assisted
integration of physiological and environmental constraints affecting
the dynamic and spatial patterns of root water uptake from soils. J.
Exp. Bot. 61: 2145–2155. doi:10.1093/jxb/erq077.
Geldner, N. (2013). The endodermis. Annu. Rev. Plant Biol. 64: 531–
558. doi:10.1146/annurev-arplant-050312-120050.
Hose, E., Clarkson, D.T., Steudle, E., Schreiber, L., and Hartung, W.
(2001). The exodermis: A variable apoplastic barrier. J. Exp. Bot. 52:
2245–2264. doi:10.1093/jexbot/52.365.2245.

Maurel, C., Simonneau, T., and Sutka, M. (2010). The significance of
roots as hydraulic rheostats. J. Exp. Bot. 61: 3191–3198. doi:10.1093/
Nawrath, C., Schreiber, L., Franke, R.B., Geldner, N., Reina-Pinto,
J.J., and Kunst, L. (2013). Apoplastic diffusion barriers in Arabidopsis.
The Arabidopsis Book 11: e0167, doi:10.1199/tab.0167.
Passioura, J.B. (1988). Water transport in and to roots. Annu. Rev. Plant
Physiol. Plant Mol. Biol. 39: 245–265. doi:10.1146/annurev.pp.39.
Rich, S.M., and Watt, M. (2013). Soil conditions and cereal root system
architecture: Review and considerations for linking Darwin and
Weaver. J. Exp. Bot. 64: 1193–1208. doi:10.1093/jxb/ert043.
Sharp, R.E., Silk, W.K., and Hsiao, T.C. (1988). Growth of the maize
primary root at low water potentials. I. Spatial distribution of
expansive growth. Plant Physiol. 87: 50–57. doi:10.1104/pp.87.1.50.
Sharp, R.E., Poroyko, V., Hejlek, L.G., Spollen, W.G., Springer, G.K.,
Bohnert, H.J., and Nguyen, H.T. (2004). Root growth maintenance
during water deficits: Physiology to functional genomics. J. Exp. Bot.
55: 2343–2351. doi:10.1093/jxb/erh276.
Steudle, E. (2000). Water uptake by plant roots: An integration of views.
Plant Soil 226: 45–56. doi:10.1023/A:1026439226716.
Steudle, E. (2001). The cohesion-tension mechanism and the acquisition
of water by plant roots. Annu. Rev. Plant Physiol. Plant Mol. Biol.
52: 847–875. doi:10.1146/annurev.arplant.52.1.847.
Steudle, E., and Peterson, C.A. (1998). How does water get through
roots? J. Exp. Bot. 49: 775–788.
Sutka, M., Li, G., Boudet, J., Boursiac, Y., Doumas, P., and Maurel,
C. (2011). Natural variation of root hydraulics in Arabidopsis grown in
normal and salt-stressed conditions. Plant Physiol. 155: 1264–1276.
Teskey, R.O., and Hinckley, T.M. (1981). Influence of temperature and
water potential on root growth of white oak. Physiol. Plant. 52: 363–
369. doi:10.1111/j.1399-3054.1981.tb06055.x.

Εξέλιξη του ξηλώματος και ανάπτυξη
Bateman, R.M., Crane, P.R., DiMichele, W.A., Kenrick, P.R., Rowe,
N.P., Speck, T., and Stein, W.E. (1998). Early evolution of land plants:
Phylogeny, physiology, and ecology of the primary terrestrial radiation. Annu.
Rev. Ecol. Syst. 29: 263–292. doi:10.1146/annurev.ecolsys.29.1.263.
Carlquist, S. (2012). How wood evolves: A new synthesis. Botany 90:
901–940. doi:10.1139/b2012-048.

Friedman, W.E., and Cook, M.E. (2000). The origin and early evolution
of tracheids in vascular plants: Integration of palaeobotanical and
neobotanical data. Philos. Trans. R. Soc. Lond. B Biol. Sci. 355: 857–
868. doi:10.1098/rstb.2000.0620.
Fukuda, H. (2010). Plant Tracheary Elements. Encyclopedia of Life
Sciences. (Chichester, UK: John Wiley & Sons). http://www.els.net
Kenrick, P., and Crane, P.R. (1997). The origin and early evolution of
plants on land. Nature 389: 33–39. doi:10.1038/37918.
Niklas, K.J. (1985). The evolution of tracheid diameter in early
vascular plants and its implications on the hydraulic conductance
of the primary xylem strand. Evolution 39: 1110–1122. doi:10.2307/
Pittermann, J. (2010). The evolution of water transport in plants: An
integrated approach. Geobiology 8: 112–139. doi:10.1111/j.1472-
Pittermann, J., Brodersen, C., and Watkins, J.E., Jr. (2013). The
physiological resilience of fern sporophytes and gametophytes:
Advances in water relations offer new insights into an old lineage.
Front Plant Sci 4: 285. doi:10.3389/fpls.2013.00285.

Schuetz, M., Smith, R., and Ellis, B. (2013). Xylem tissue specification,
patterning, and differentiation mechanisms. J. Exp. Bot. 64: 11–31.
Sperry, J.S. (2003). Evolution of water transport and xylem structure.
Int. J. Plant Sci. 164: S115–S127. doi:10.1086/368398.
Spicer, R., and Groover, A. (2010). Evolution of development of
vascular cambia and secondary growth. New Phytol. 186: 577–592.
Turner, S., Gallois, P., and Brown, D. (2007). Tracheary element
differentiation. Annu. Rev. Plant Biol. 58: 407–433. doi:10.1146/

Δομή ξηλώματος και ανθεκτικότητα στον εμβολισμό
Choat, B., Cobb, A.R., and Jansen, S. (2008). Structure and function of
bordered pits: New discoveries and impacts on whole-plant
hydraulic function. New Phytol. 177: 608–625. doi:10.1111/
Cochard, H., Hölttä, T., Herbette, S., Delzon, S., and Mencuccini, M.
(2009). New insights into the mechanisms of water-stress-induced
cavitation in conifers. Plant Physiol. 151: 949–954. doi:10.1104/
Hacke, U.G., and Sperry, J.S. (2001). Functional and ecological xylem
anatomy. Perspect. Plant Ecol. Evol. Syst. 4: 97–115. doi:10.1078/
Holbrook, N.M., Burns, M.J., and Field, C.B. (1995). Negative xylem
pressures in plants: A test of the balancing pressure technique.
Science 270: 1193–1194. doi:10.1126/science.270.5239.1193.
Holbrook, N.M., Zwieniecki, M.A., and Melcher, P.J. (2002). The
dynamics of “dead wood”: Maintenance of water transport through
plant stems. Integr. Comp. Biol. 42: 492–496. doi:10.1093/icb/
Johnson, D.M., McCulloh, K.A., Woodruff, D.R., and Meinzer, F.C.
(2012). Hydraulic safety margins and embolism reversal in stems and
leaves: Why are conifers and angiosperms so different? Plant Sci.
195: 48–53. doi:10.1016/j.plantsci.2012.06.010.
Lens, F., Tixier, A., Cochard, H., Sperry, J.S., Jansen, S., and
Herbette, S. (2013). Embolism resistance as a key mechanism to
understand adaptive plant strategies. Curr. Opin. Plant Biol. 16: 287–
292. doi:10.1016/j.pbi.2013.02.005.
Myburg, A.A., Lev-Yadun, S., and Sederoff, R.R. (2013) Xylem
Structure and Function. Encyclopedia of Life Sciences. (Chichester,
UK: John Wiley & Sons). http://www.els.net [doi: 10.1002/9780470015902.
Pittermann, J., Sperry, J.S., Hacke, U.G., Wheeler, J.K., and
Sikkema, E.H. (2005). Torus-margo pits help conifers compete
with angiosperms. Science 310: 1924. doi:10.1126/science.1120479.
Pockman, W.T., Sperry, J.S., and O’Leary, J.W. (1995). Sustained and
significant negative water pressure in xylem. Nature 378: 715–716.
Sperry, J.S., and Tyree, M.T. (1988). Mechanism of water stressinduced
xylem embolism. Plant Physiol. 88: 581–587. doi:10.1104/
Sperry, J.S., Hacke, U.G., and Pittermann, J. (2006). Size and function
in conifer tracheids and angiosperm vessels. Am. J. Bot. 93: 1490–
1500. doi:10.3732/ajb.93.10.1490.
Tyree, M.T., and Ewers, F.W. (1991). The hydraulic architecture of trees
and other woody plants. New Phytol. 119: 345–360. doi:10.1111/
Tyree, M.T., and Sperry, J.S. (1989). Vulnerability of xylem to cavitation
and embolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40: 19–36.

Tyree, M.T., Davis, S.D., and Cochard, H. (1994). Biophysical
perspectives of xylem evolution—Is there a tradeoff of hydraulic efficiency
for vulnerability to dysfunction? IAWA J. 15: 335–360.
Zwieniecki, M.A., and Secchi, F. (2012). Getting variable xylem
hydraulic resistance under control: Interplay of structure and
function. Tree Physiol. 32: 1431–1433. doi:10.1093/treephys/

Ball, M. (1988). Ecophysiology of mangroves. Trees (Berl.) 2: 129–142.
Becker, P., Meinzer, F.C., and Wullschleger, S.D. (2000). Hydraulic
limitation of tree height: A critique. Funct. Ecol. 14: 4–11. doi:10.1046/
Cirelli, D., Jagels, R., and Tyree, M.T. (2008). Toward an improved
model of maple sap exudation: The location and role of osmotic
barriers in sugar maple, butternut and white birch. Tree Physiol. 28:
1145–1155. doi:10.1093/treephys/28.8.1145.
Cramer, M.D. (2012). Unravelling the limits to tree height: A major role
for water and nutrient trade-offs. Oecologia 169: 61–72. doi:10.1007/
Koch, G.W., Sillett, S.C., Jennings, G.M., and Davis, S.D. (2004).
The limits to tree height. Nature 428: 851–854. doi:10.1038/
Milburn, J.A., and O’Malley, P.E.R. (1984). Freeze-induced sap
absorption in Acer pseudoplatanus: A possible mechanism. Can. J.
Bot. 62: 2101–2106. doi:10.1139/b84-285.
Netting, A.G. (2009). Limitations within “the limits to tree height”. Am. J.
Bot. 96: 542–544. doi:10.3732/ajb.0800144.
Niklas, K.J. (2007). Maximum plant height and the biophysical
factors that limit it. Tree Physiol. 27: 433–440. doi:10.1093/treephys/
Ryan, M.G., and Yoder, B.J. (1997). Hydraulic limits to tree height and
tree growth. Bioscience 47: 235–242. doi:10.2307/1313077.
Ryan, M.G., Phillips, N., and Bond, B.J. (2006). The hydraulic limitation
hypothesis revisited. Plant Cell Environ. 29: 367–381. doi:10.1111/
Scholander, P.F., Bradstreet, E.D., Hemmingsen, E.A., and Hammel, H.T.
(1965). Sap pressure in vascular plants: Negative hydrostatic pressure
can be measured in plants. Science. 148: 339–346. doi: 10.1126/
Scholander, P.F., Love, W.E., and Kanwisher, J.W. (1955). The rise of
sap in tall grapevines. Plant Physiol. 30: 93–104. doi:10.1104/
Scholander, P.F., Hammel, H.T., Hemmingsen, E., and Garey, W.
(1962). Salt balance in mangroves. Plant Physiol. 37: 722–729. doi:10.1104/
Scholander, P.F., Hammel, H.T., Hemmingsen, E.A., and Bradstreet,
E.D. (1964). Hydrostatic pressure and osmotic potential in leaves of
mangroves and some other plants. Proc. Natl. Acad. Sci. USA 52:
119–125. doi:10.1073/pnas.52.1.119.
Sperry, J.S., Holbrook, N.M., Zimmermann, M.H., and Tyree, M.T.
(1987). Spring filling of xylem vessels in wild grapevine. Plant Physiol.
83: 414–417. doi:10.1104/pp.83.2.414.
Tyree, M.T. (1983). Maple sap uptake, exudation, and pressure changes
correlated with freezing exotherms and thawing endotherms. Plant
Physiol. 73: 277–285. doi:10.1104/pp.73.2.277.
Wegner, L.H. (2014). Root pressure and beyond: energetically uphill
water transport into xylem vessels? J. Exp. Bot., 65: 381–393. doi:

Κίνηση του νερού και έλεγχος της διαπνοής
Boyce, C.K., Brodribb, T.J., Feild, T.S., and Zwieniecki, M.A. (2009).
Angiosperm leaf vein evolution was physiologically and environmentally
transformative. Proc. Biol. Sci. 276: 1771–1776. doi:10.1098/
Brodribb, T.J., Feild, T.S., and Sack, L. (2010). Viewing leaf structure
and evolution from a hydraulic perspective. Funct. Plant Biol. 37: 488–
498. doi:10.1071/FP10010.
Christmann, A., Grill, E., and Huang, J. (2013). Hydraulic signals in longdistance
signaling. Curr. Opin. Plant Biol. 16: 293–300. doi:10.1016/j.
Cochard, H., Froux, F., Mayr, S., and Coutand, C. (2004). Xylem wall
collapse in water-stressed pine needles. Plant Physiol. 134: 401–408.
Dodd, I.C. (2013). Abscisic acid and stomatal closure: A hydraulic
conductance conundrum? New Phytol. 197: 6–8. doi:10.1111/nph.12052.
Johnson, D.M., McCulloh, K.A., Woodruff, D.R., and Meinzer, F.C.
(2012). Evidence for xylem embolism as a primary factor in dehydrationinduced
declines in leaf hydraulic conductance. Plant Cell Environ. 35:
760–769. doi:10.1111/j.1365-3040.2011.02449.x.
Kim, T.-H., Böhmer, M., Hu, H., Nishimura, N., and Schroeder, J.I.
(2010). Guard cell signal transduction network: Advances in understanding
abscisic acid, CO2, and Ca2þ signaling. Annu. Rev. Plant
Biol. 61: 561–591. doi:10.1146/annurev-arplant-042809-112226.
Leegood, R.C. (2008). Roles of the bundle sheath cells in leaves of C3
plants. J. Exp. Bot. 59: 1663–1673. doi:10.1093/jxb/erm335.
Maseda, P.H., and Fernández, R.J. (2006). Stay wet or else: Three
ways in which plants can adjust hydraulically to their environment. J.
Exp. Bot. 57: 3963–3977. doi:10.1093/jxb/erl127.
Pantin, F., Monnet, F., Jannaud, D., Costa, J.M., Renaud, J., Muller,
B., Simonneau, T., and Genty, B. (2013). The dual effect of abscisic
acid on stomata. New Phytol. 197: 65–72. doi:10.1111/nph.12013.
Parent, B., Hachez, C., Redondo, E., Simonneau, T., Chaumont, F.,
and Tardieu, F. (2009). Drought and abscisic acid effects on
aquaporin content translate into changes in hydraulic conductivity
and leaf growth rate: A trans-scale approach. Plant Physiol. 149:
2000–2012. doi:10.1104/pp.108.130682.
Prado, K., and Maurel, C. (2013). Regulation of leaf hydraulics: From
molecular to whole plant levels. Front Plant Sci 4: 255. doi:10.3389/
Raven, J.A. (2002). Selection pressures on stomatal evolution. New
Phytol. 153: 371–386. doi:10.1046/j.0028-646X.2001.00334.x.
Sack, L., and Holbrook, N.M. (2006). Leaf hydraulics. Annu. Rev. Plant
Biol. 57: 361–381. doi:10.1146/annurev.arplant.56.032604.144141.
Sack, L., and Scoffoni, C. (2013). Leaf venation: Structure, function,
development, evolution, ecology and applications in the past, present
and future. New Phytol. 198: 983–1000. doi:10.1111/nph.12253.
Shatil-Cohen, A., Attia, Z., and Moshelion, M. (2011). Bundle-sheath
cell regulation of xylem-mesophyll water transport via aquaporins
under drought stress: A target of xylem-borne ABA? Plant J. 67:
72–80. doi:10.1111/j.1365-313X.2011.04576.x.

Allen, C.D., et al. (2010). A global overview of drought and heatinduced
tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage. 259: 660–684. doi:10.1016/j.foreco.2009.09.001.
Anderegg, W.R.L., Berry, J.A., Smith, D.D., Sperry, J.S., Anderegg,
L.D.L., and Field, C.B. (2012). The roles of hydraulic and carbon
stress in a widespread climate-induced forest die-off. Proc. Natl.
Acad. Sci. USA 109: 233–237. doi:10.1073/pnas.1107891109.
Barigah, T.S., Charrier, O., Douris, M., Bonhomme, M., Herbette, S.,
Ame´ glio, T., Fichot, R., Brignolas, F., and Cochard, H. (2013).
Water stress-induced xylem hydraulic failure is a causal factor of tree
mortality in beech and poplar. Annals of Botany. 112: 1431–1437. doi:
Breshears, D.D., et al. (2005). Regional vegetation die-off in response
to global-change-type drought. Proc. Natl. Acad. Sci. USA 102:
15144–15148. doi:10.1073/pnas.0505734102.
Brodribb, T.J. (2009). Xylem hydraulic physiology: The functional
backbone of terrestrial plant productivity. Plant Sci. 177: 245–251.
Brodribb, T.J., and Cochard, H. (2009). Hydraulic failure defines the
recovery and point of death in water-stressed conifers. Plant Physiol.
149: 575–584. doi:10.1104/pp.108.129783.
Choat, B., et al. (2012). Global convergence in the vulnerability of
forests to drought. Nature 491: 752–755.
Food and Agriculture Organization of the United Nations. (2013).
Climate Change Guidelines for Forest Managers. FAO Forestry Paper
No. 172. (Rome: Food and Agriculture Organization of the United
Nations). http://www.fao.org/docrep/018/i3383e/i3383e00.htm.
Hicke, J.A., and Zeppel, M.J.B. (2013). Climate-driven tree mortality:
Insights from the piñon pine die-off in the United States. New Phytol.
200: 301–303. doi:10.1111/nph.12464.
Kozlowski, T.T., and Pallardy, S.G. (2002). Acclimation and adaptive
responses of woody plants to environmental stresses. Bot. Rev. 68:
270–334. doi:10.1663/0006-8101(2002)068[0270:AAAROW]2.0.CO;2.
McDowell, N.G. (2011). Mechanisms linking drought, hydraulics,
carbon metabolism, and vegetation mortality. Plant Physiol. 155:
1051–1059. doi:10.1104/pp.110.170704.
McDowell, N.G., Beerling, D.J., Breshears, D.D., Fisher, R.A., Raffa,
K.F., and Stitt, M. (2011). The interdependence of mechanisms
underlying climate-driven vegetation mortality. Trends Ecol. Evol. 26:
523–532. doi:10.1016/j.tree.2011.06.003.
Sperry, J.S., Hacke, U.G., Oren, R., and Comstock, J.P. (2002). Water
deficits and hydraulic limits to leaf water supply. Plant Cell Environ.
25: 251–263. doi:10.1046/j.0016-8025.2001.00799.x.
Vicente-Serrano, S.M., Gouveia, C., Camarero, J.J., Beguería, S.,
Trigo, R., López-Moreno, J.I., Azorín-Molina, C., Pasho, E.,
Lorenzo-Lacruz, J., Revuelto, J., Morán-Tejeda, E., and Sanchez-
Lorenzo, A. (2013). Response of vegetation to drought time-scales
across global land biomes. Proc. Natl. Acad. Sci. USA 110: 52–57.
Weed, A.S., Ayres, M.P., and Hicke, J.A. (2013). Consequences of
climate change for biotic disturbances in North American forests.
Ecol. Monogr. 83: 441–470. doi:10.1890/13-0160.1.
Zanne, A.E., et al. (2014). Three keys to the radiation of angiosperms
into freezing environments. Nature, in press 10.1038/

Balling, A., and Zimmermann, U. (1990). Comparative measurements
of the xylem pressure of Nicotiana plants by means of the pressure
bomb and pressure probe. Planta 182: 325–338. doi:10.1007/

Brodersen, C.R., Lee, E.F., Choat, B., Jansen, S., Phillips, R.J.,
Shackel, K.A., McElrone, A.J., and Matthews, M.A. (2011).
Automated analysis of three-dimensional xylem networks using
high-resolution computed tomography. New Phytol. 191: 1168–
1179. doi:10.1111/j.1469-8137.2011.03754.x.
Canny, M. (1997). Vessel contents of leaves after excision: A test of
Scholander’s assumption. Am. J. Bot. 84: 1217. doi:10.2307/2446045.
Choat, B., Drayton, W.M., Brodersen, C., Matthews, M.A., Shackel,
K.A., Wada, H., and McElrone, A.J. (2010). Measurement of
vulnerability to water stress-induced cavitation in grapevine: A
comparison of four techniques applied to a long-vesseled species.
Plant Cell Environ. 33: 1502–1512.
Cochard, H. (2002). A technique for measuring xylem hydraulic
conductance under high negative pressures. Plant Cell Environ. 25:
815–819. doi:10.1046/j.1365-3040.2002.00863.x.
Cochard, H., Badel, E., Herbette, S., Delzon, S., Choat, B., and Jansen,
S. (2013). Methods for measuring plant vulnerability to cavitation: A critical
review. J. Exp. Bot. 64: 4779–4791. doi:10.1093/jxb/ert193.
Crombie, D., Hipkins, M., and Milburn, J. (1985). Gas penetration of pit
membranes in the xylem of Rhododendron as the cause of acoustically
detectable sap cavitation. Funct. Plant Biol. 12: 445–453.
Holbrook, N.M., Burns, M.J., and Fields, C.B. (1995). Negative
xylem pressures in plants: A test of the balancing pressure
technique. Science 270: 1193–1194. doi:10.1126/science.270.
McElrone, A.J., Choat, B., Parkinson, D.Y., MacDowell, A.A., and
Brodersen, C.R. (2013). Using high resolution computed tomography
to visualize the three dimensional structure and function of plant
vasculature. J. Vis. Exp. 74: e50162 10.3791/50162.
Moshelion, M., Moran, N., and Chaumont, F. (2004). Dynamic
changes in the osmotic water permeability of protoplast plasma
membrane. Plant Physiol. 135: 2301–2317. doi:10.1104/pp.104.043000.
Ramahaleo, T., Morillon, R., Alexandre, J., and Lassalles, J.-P. (1999).
Osmotic water permeability of isolated protoplasts. Modifications during
development. Plant Physiol. 119: 885–896. doi:10.1104/pp.119.3.885.

Ritman, K.T., and Milburn, J.A. (1988). Acoustic emissions from plants:
Ultrasonic and audible compared. J. Exp. Bot. 39: 1237–1248.
Sperry, J. (2013). Cutting-edge research or cutting-edge artefact? An
overdue control experiment complicates the xylem refilling story.
Plant Cell Environ. 36: 1916–1918.
Sperry, J.S. (1986). Relationship of xylem embolism to xylem pressure
potential, stomatal closure, and shoot morphology in the palm Rhapis
excelsa. Plant Physiol. 80: 110–116. doi:10.1104/pp.80.1.110.
Stuppy, W.H., Maisano, J.A., Colbert, M.W., Rudall, P.J., and Rowe,
T.B. (2003). Three-dimensional analysis of plant structure using highresolution
x-ray computed tomography. Trends Plant Sci. 8: 2–6.
Tyree, M.T., and Hammel, H.T. (1972). The measurement of the turgor
pressure and the water relations of plants by the pressure-bomb
technique. J. Exp. Bot. 23: 267–282. doi:10.1093/jxb/23.1.267.
Tyree, M.T., Patiño, S., Bennink, J., and Alexander, J. (1995).
Dynamic measurements of roots hydraulic conductance using
a high-pressure flowmeter in the laboratory and field. J. Exp. Bot.
46: 83–94. doi:10.1093/jxb/46.1.83.
Tyree, M.T., Yang, S., Cruiziat, P., and Sinclair, B. (1994). Novel
methods of measuring hydraulic conductivity of tree root systems and
interpretation using AMAIZED (a maize-root dynamic model for water
and solute transport). Plant Physiol. 104: 189–199.
Vandegehuchte, M.W., and Steppe, K. (2013). Sap-flux density
measurement methods: Working principles and applicability. Funct.
Plant Biol. 40: 213–223. doi:10.1071/FP12233.
Wei, C., Tyree, M.T., and Steudle, E. (1999). Direct measurement of
xylem pressure in leaves of intact maize plants. A test of the cohesiontension
theory taking hydraulic architecture into consideration. Plant
Physiol. 121: 1191–1206. doi:10.1104/pp.121.4.1191.
Wheeler, J.K., Huggett, B.A., Tofte, A.N., Rockwell, F.E., and
Holbrook, N.M. (2013). Cutting xylem under tension or supersaturated
with gas can generate PLC and the appearance of rapid
recovery from embolism. Plant Cell Environ. 36: 1938–1949.