ΔΙΑΛΕΞΗ 3

ΑΡΧΕΙΟ-ΔΙΑΛΕΞΗ 3 (course 3)

ΒΙΒΛΙΟΓΡΑΦΙΑ-ΕΠΙΠΛΕΟΝ ΠΗΓΕΣ

EN

You can check your understanding of the uptake and transport of water through this
excellent interactive tutorial http://ats.doit.wisc.edu/biology/pb/wr/wr.htm. (this was a functioning link – hopefully it still is.)

GR

Μπορείτε να ελέγξετε την κατανόησή σας σχετικά με την πρόσληψη και τη μεταφορά του νερού μέσω αυτού εξαιρετικού διαδραστικού φροντιστηρίου http://ats.doit.wisc.edu/biology/pb/wr/wr.htm. (αυτός ήταν ένας λειτουργικός σύνδεσμος – ελπίζουμε ότι εξακολουθεί να είναι.)

http://6e.plantphys.net/ch03.html

http://6e.plantphys.net/ch04.html 

  • Επίσης, κάποιες ερωτήσεις κατανόησης

http://6e.plantphys.net/study03.html

http://6e.plantphys.net/study04.html

Βιβλία
Aroca, R., ed (2012). Plant Responses to Drought Stress. (Heidelberg:
Springer).
Kramer, P.J., and Boyer, J.S. (1995). Water Relations of Plants and
Soils. (San Diego, CA: Academic Press).
Nobel, P.S. (2009). Physicochemical and Environmental Plant Physiology,
4th ed. (Oxford, UK: Academic Press).
Pallardy, S.G. (2008). Physiology of Woody Plants, 3rd ed. (London:
Academic Press).
Tyree, M.T., and Zimmermann, M.H. (2002). Xylem Structure and the
Ascent of Sap, 2nd ed. (Berlin: Springer-Verlag).

Ιστορία
Böhm, J. (1893). Capillarität und Saftsteigen. Ber. Dtsch. Bot. Ges. 11:
203–221.
Brown, H. (2013). The theory of the rise of sap in trees: Some historical
and conceptual remarks. Phys. Perspect. 15: 320–358. doi:10.1007/
s00016-013-0117-1.
Dixon, H.H. (1914). Transpiration and the Ascent of Sap in Plants.
(London: Macmillan).

Dixon, H.H., and Joly, J. (1895). On the ascent of sap. Philos. Trans. R.
Soc. B. 186: 563–576. doi:10.1098/rstb.1895.0012.
Hales, S. (1727). Vegetable Staticks: Or, an Account of Some Statical
Experiments on the Sap in Vegetables. (London: W. and J. Innys).
Kramer, P.J. (1974). Fifty years of progress in water relations research.
Plant Physiol. 54: 463–471. doi: 10.1104/pp.54.4.463.
Mansfield, T.A., Davies, W.J., and Leigh, R.A. (1993). The transpiration

Η ροή του νερού διέπετε από νόμους της φυσικής
Becker, P., Tyree, M.T., and Tsuda, M. (1999). Hydraulic conductances of
angiosperms versus conifers: Similar transport sufficiency at the whole plant
level. Tree Physiol. 19: 445–452. doi:10.1093/treephys/19.7.445.
Davies, W.J. (1986). Transpiration and the water balance of plants. In Plant
Physiology: A Treatise. Vol. IX. Water and Solutes in Plants, F.C. Steward,
J.F. Sutcliffe, and J.E. Dale, eds (New York: Academic Press), pp. 49–154.
Passioura, J.B. (2010) Plant–Water Relations. Encyclopedia of
Life Sciences. (Chichester, UK: John Wiley & Sons). 10.1002/
9780470015902.a0001288.pub2.
Pritchard, J. (2001). Turgor Pressure. Encyclopedia of Life Sciences.
(Chichester, UK: John Wiley & Sons). 10.1038/npg.els.0001687 stream. Introduction. Philos. Trans. R. Soc. Lond. B 341: 3–4.
doi:10.1098/rstb.1993.0085.
Richter, H., and Cruiziat, P. (2002). A brief history of the study of water
movement in the xylem. http://5e.plantphys.net/article.php?ch=4&id=98.
Scholander, P.F., Hammel, H.T., Hemmingsen, E.A., and Bradstreet,
E.D. (1964). Hydrostatic pressure and osmotic potential in leaves of
mangroves and some other plants. Proc. Natl. Acad. Sci. USA 52:
119–125. doi:10.1073/pnas.52.1.119.
Strasburger, E., Noll, F., Schenck, H., and Schimper, A.F.W. (1903). A
Text-Book of Botany, 2nd English ed. (London: Macmillan).

Ακουαπορίνες
Gerbeau, P., Amodeo, G., Henzler, T., Santoni, V., Ripoche, P., and
Maurel, C. (2002). The water permeability of Arabidopsis plasma
membrane is regulated by divalent cations and pH. Plant J. 30: 71–81.
doi:10.1046/j.1365-313X.2002.01268.x.
Hachez, C., Besserer, A., Chevalier, A.S., and Chaumont, F. (2013).
Insights into plant plasma membrane aquaporin trafficking. Trends
Plant Sci. 18: 344–352. doi:10.1016/j.tplants.2012.12.003.
Heinen, R.B., Ye, Q., and Chaumont, F. (2009). Role of aquaporins in
leaf physiology. J. Exp. Bot. 60: 2971–2985. doi:10.1093/jxb/erp171
Javot, H., and Maurel, C. (2002). The role of aquaporins in root water
uptake. Ann. Bot. 90: 301–313. doi:10.1093/aob/mcf199.
Javot, H., Lauvergeat, V., Santoni, V., Martin-Laurent, F., Güçlü, J.,
Vinh, J., Heyes, J., Franck, K.I., Schäffner, A.R., Bouchez, D., and
Maurel, C. (2003). Role of a single aquaporin isoform in root water
uptake. Plant Cell 15: 509–522. doi:10.1105/tpc.008888.
Kaldenhoff, R., Grote, K., Zhu, J.-J., and Zimmermann, U. (1998).
Significance of plasmalemma aquaporins for water-transport in
Arabidopsis thaliana. Plant J. 14: 121–128. doi:10.1046/j.1365-
313X.1998.00111.x.
Li, G., Santoni, V., and Maurel, C. (2014) Plant aquaporins: Roles in
plant physiology. Biochim Biophys Acta, in press http://www.sciencedirect.
com/science/article/pii/S030441651300487X#.
Luu, D.-T., and Maurel, C. (2005). Aquaporins in a challenging
environment: Molecular gears for adjusting plant water status. Plant
Cell Environ. 28: 85–96. doi:10.1111/j.1365-3040.2004.01295.x.

Martinez-Ballesta, M.C., and Carvajal, M. (2014). New challenges in
plant aquaporin biotechnology. Plant Sci. 217–218: 71–77. doi:10.1016/
j.plantsci.2013.12.006.
Maurel, C. (2007). Plant aquaporins: Novel functions and regulation
properties. FEBS Lett. 581: 2227–2236. doi:10.1016/j.febslet.2007.03.021.
Maurel, C., and Chrispeels, M.J. (2001). Aquaporins. A molecular entry
into plant water relations. Plant Physiol. 125: 135–138. doi:10.1104/p.125.1.135.
Maurel, C., Reizer, J., Schroeder, J.I., and Chrispeels, M.J. (1993).
The vacuolar membrane protein g-TIP creates water specific channels
in Xenopus oocytes. EMBO J. 12: 2241–2247.
Maurel, C., Verdoucq, L., Luu, D.-T., and Santoni, V. (2008). Plant
aquaporins: Membrane channels with multiple integrated functions.
Annu. Rev. Plant Biol. 59: 595–624. doi:10.1146/annurev.arplant.59.
032607.092734.
Maurel, C., Santoni, V., Luu, D.-T., Wudick, M.M., and Verdoucq, L.
(2009). The cellular dynamics of plant aquaporin expression and
functions. Curr. Opin. Plant Biol. 12: 690–698. doi:10.1016/j.pbi.2009.09.002.
Murata, K., Mitsuoka, K., Hirai, T., Walz, T., Agre, P., Heymann, J.B.,
Engel, A., and Fujiyoshi, Y. (2000). Structural determinants of water
permeation through aquaporin-1. Nature 407: 599–605. doi:10.1038/
35036519.
Preston, G.M., Carroll, T.P., Guggino, W.B., and Agre, P. (1992).
Appearance of water channels in Xenopus oocytes expressing red
cell CHIP28 protein. Science 256: 385–387. doi:10.1126/science.
256.5055.385.
Siefritz, F., Tyree, M.T., Lovisolo, C., Schubert, A., and Kaldenhoff,
R. (2002). PIP1 plasma membrane aquaporins in tobacco: From
cellular effects to function in plants. Plant Cell 14: 869–876.
doi:10.1105/tpc.000901.
Törnroth-Horsefield, S., Wang, Y., Hedfalk, K., Johanson, U.,
Karlsson, M., Tajkhorshid, E., Neutze, R., and Kjellbom, P.
(2006). Structural mechanism of plant aquaporin gating. Nature 439:
688–694. doi:10.1038/nature04316.
Tournaire-Roux, C., Sutka, M., Javot, H., Gout, E., Gerbeau, P., Luu,
D.-T., Bligny, R., and Maurel, C. (2003). Cytosolic pH regulates root
water transport during anoxic stress through gating of aquaporins.
Nature 425: 393–397. doi:10.1038/nature01853.

Πρόσληψη από τη ρίζα και αγωγιμότητα
Aroca, R., Porcel, R., and Ruiz-Lozano, J.M. (2011). Regulation of root
water uptake under abiotic stress conditions. J. Exp. Bot. 63: 43–57.
doi:10.1093/jxb/err266.
Bramley, H., Turner, N.C., Turner, D.W., and Tyerman, S.D. (2009).
Roles of morphology, anatomy, and aquaporins in determining
contrasting hydraulic behavior of roots. Plant Physiol. 150: 348–364.
doi:10.1104/pp.108.134098.
Carminati, A., and Vetterlein, D. (2013). Plasticity of rhizosphere
hydraulic properties as a key for efficient utilization of scarce resources.
Ann. Bot. 112: 277–290.
Cassab, G.I., Eapen, D., and Campos, M.E. (2013). Root hydrotropism:
An update. Am. J. Bot. 100: 14–24. doi:10.3732/ajb.1200306.
Draye, X., Kim, Y., Lobet, G., and Javaux, M. (2010). Model-assisted
integration of physiological and environmental constraints affecting
the dynamic and spatial patterns of root water uptake from soils. J.
Exp. Bot. 61: 2145–2155. doi:10.1093/jxb/erq077.
Geldner, N. (2013). The endodermis. Annu. Rev. Plant Biol. 64: 531–
558. doi:10.1146/annurev-arplant-050312-120050.
Hose, E., Clarkson, D.T., Steudle, E., Schreiber, L., and Hartung, W.
(2001). The exodermis: A variable apoplastic barrier. J. Exp. Bot. 52:
2245–2264. doi:10.1093/jexbot/52.365.2245.

Maurel, C., Simonneau, T., and Sutka, M. (2010). The significance of
roots as hydraulic rheostats. J. Exp. Bot. 61: 3191–3198. doi:10.1093/
jxb/erq150.
Nawrath, C., Schreiber, L., Franke, R.B., Geldner, N., Reina-Pinto,
J.J., and Kunst, L. (2013). Apoplastic diffusion barriers in Arabidopsis.
The Arabidopsis Book 11: e0167, doi:10.1199/tab.0167.
Passioura, J.B. (1988). Water transport in and to roots. Annu. Rev. Plant
Physiol. Plant Mol. Biol. 39: 245–265. doi:10.1146/annurev.pp.39.
060188.001333.
Rich, S.M., and Watt, M. (2013). Soil conditions and cereal root system
architecture: Review and considerations for linking Darwin and
Weaver. J. Exp. Bot. 64: 1193–1208. doi:10.1093/jxb/ert043.
Sharp, R.E., Silk, W.K., and Hsiao, T.C. (1988). Growth of the maize
primary root at low water potentials. I. Spatial distribution of
expansive growth. Plant Physiol. 87: 50–57. doi:10.1104/pp.87.1.50.
Sharp, R.E., Poroyko, V., Hejlek, L.G., Spollen, W.G., Springer, G.K.,
Bohnert, H.J., and Nguyen, H.T. (2004). Root growth maintenance
during water deficits: Physiology to functional genomics. J. Exp. Bot.
55: 2343–2351. doi:10.1093/jxb/erh276.
Steudle, E. (2000). Water uptake by plant roots: An integration of views.
Plant Soil 226: 45–56. doi:10.1023/A:1026439226716.
Steudle, E. (2001). The cohesion-tension mechanism and the acquisition
of water by plant roots. Annu. Rev. Plant Physiol. Plant Mol. Biol.
52: 847–875. doi:10.1146/annurev.arplant.52.1.847.
Steudle, E., and Peterson, C.A. (1998). How does water get through
roots? J. Exp. Bot. 49: 775–788.
Sutka, M., Li, G., Boudet, J., Boursiac, Y., Doumas, P., and Maurel,
C. (2011). Natural variation of root hydraulics in Arabidopsis grown in
normal and salt-stressed conditions. Plant Physiol. 155: 1264–1276.
doi:10.1104/pp.110.163113.
Teskey, R.O., and Hinckley, T.M. (1981). Influence of temperature and
water potential on root growth of white oak. Physiol. Plant. 52: 363–
369. doi:10.1111/j.1399-3054.1981.tb06055.x.

Εξέλιξη του ξηλώματος και ανάπτυξη
Bateman, R.M., Crane, P.R., DiMichele, W.A., Kenrick, P.R., Rowe,
N.P., Speck, T., and Stein, W.E. (1998). Early evolution of land plants:
Phylogeny, physiology, and ecology of the primary terrestrial radiation. Annu.
Rev. Ecol. Syst. 29: 263–292. doi:10.1146/annurev.ecolsys.29.1.263.
Carlquist, S. (2012). How wood evolves: A new synthesis. Botany 90:
901–940. doi:10.1139/b2012-048.

Friedman, W.E., and Cook, M.E. (2000). The origin and early evolution
of tracheids in vascular plants: Integration of palaeobotanical and
neobotanical data. Philos. Trans. R. Soc. Lond. B Biol. Sci. 355: 857–
868. doi:10.1098/rstb.2000.0620.
Fukuda, H. (2010). Plant Tracheary Elements. Encyclopedia of Life
Sciences. (Chichester, UK: John Wiley & Sons). http://www.els.net
[doi:10.1002/9780470015902.a0001814.pub2].
Kenrick, P., and Crane, P.R. (1997). The origin and early evolution of
plants on land. Nature 389: 33–39. doi:10.1038/37918.
Niklas, K.J. (1985). The evolution of tracheid diameter in early
vascular plants and its implications on the hydraulic conductance
of the primary xylem strand. Evolution 39: 1110–1122. doi:10.2307/
2408738.
Pittermann, J. (2010). The evolution of water transport in plants: An
integrated approach. Geobiology 8: 112–139. doi:10.1111/j.1472-
4669.2010.00232.x.
Pittermann, J., Brodersen, C., and Watkins, J.E., Jr. (2013). The
physiological resilience of fern sporophytes and gametophytes:
Advances in water relations offer new insights into an old lineage.
Front Plant Sci 4: 285. doi:10.3389/fpls.2013.00285.

Schuetz, M., Smith, R., and Ellis, B. (2013). Xylem tissue specification,
patterning, and differentiation mechanisms. J. Exp. Bot. 64: 11–31.
doi:10.1093/jxb/ers287.
Sperry, J.S. (2003). Evolution of water transport and xylem structure.
Int. J. Plant Sci. 164: S115–S127. doi:10.1086/368398.
Spicer, R., and Groover, A. (2010). Evolution of development of
vascular cambia and secondary growth. New Phytol. 186: 577–592.
doi:10.1111/j.1469-8137.2010.03236.x.
Turner, S., Gallois, P., and Brown, D. (2007). Tracheary element
differentiation. Annu. Rev. Plant Biol. 58: 407–433. doi:10.1146/
annurev.arplant.57.032905.105236.

Δομή ξηλώματος και ανθεκτικότητα στον εμβολισμό
Choat, B., Cobb, A.R., and Jansen, S. (2008). Structure and function of
bordered pits: New discoveries and impacts on whole-plant
hydraulic function. New Phytol. 177: 608–625. doi:10.1111/
j.1469-8137.2007.02317.x.
Cochard, H., Hölttä, T., Herbette, S., Delzon, S., and Mencuccini, M.
(2009). New insights into the mechanisms of water-stress-induced
cavitation in conifers. Plant Physiol. 151: 949–954. doi:10.1104/
pp.109.138305.
Hacke, U.G., and Sperry, J.S. (2001). Functional and ecological xylem
anatomy. Perspect. Plant Ecol. Evol. Syst. 4: 97–115. doi:10.1078/
1433-8319-00017.
Holbrook, N.M., Burns, M.J., and Field, C.B. (1995). Negative xylem
pressures in plants: A test of the balancing pressure technique.
Science 270: 1193–1194. doi:10.1126/science.270.5239.1193.
Holbrook, N.M., Zwieniecki, M.A., and Melcher, P.J. (2002). The
dynamics of “dead wood”: Maintenance of water transport through
plant stems. Integr. Comp. Biol. 42: 492–496. doi:10.1093/icb/
42.3.492.
Johnson, D.M., McCulloh, K.A., Woodruff, D.R., and Meinzer, F.C.
(2012). Hydraulic safety margins and embolism reversal in stems and
leaves: Why are conifers and angiosperms so different? Plant Sci.
195: 48–53. doi:10.1016/j.plantsci.2012.06.010.
Lens, F., Tixier, A., Cochard, H., Sperry, J.S., Jansen, S., and
Herbette, S. (2013). Embolism resistance as a key mechanism to
understand adaptive plant strategies. Curr. Opin. Plant Biol. 16: 287–
292. doi:10.1016/j.pbi.2013.02.005.
Myburg, A.A., Lev-Yadun, S., and Sederoff, R.R. (2013) Xylem
Structure and Function. Encyclopedia of Life Sciences. (Chichester,
UK: John Wiley & Sons). http://www.els.net [doi: 10.1002/9780470015902.
a0001302.pub2].
Pittermann, J., Sperry, J.S., Hacke, U.G., Wheeler, J.K., and
Sikkema, E.H. (2005). Torus-margo pits help conifers compete
with angiosperms. Science 310: 1924. doi:10.1126/science.1120479.
Pockman, W.T., Sperry, J.S., and O’Leary, J.W. (1995). Sustained and
significant negative water pressure in xylem. Nature 378: 715–716.
doi:10.1038/378715a0.
Sperry, J.S., and Tyree, M.T. (1988). Mechanism of water stressinduced
xylem embolism. Plant Physiol. 88: 581–587. doi:10.1104/
pp.88.3.581
Sperry, J.S., Hacke, U.G., and Pittermann, J. (2006). Size and function
in conifer tracheids and angiosperm vessels. Am. J. Bot. 93: 1490–
1500. doi:10.3732/ajb.93.10.1490.
Tyree, M.T., and Ewers, F.W. (1991). The hydraulic architecture of trees
and other woody plants. New Phytol. 119: 345–360. doi:10.1111/
j.1469-8137.1991.tb00035.x.
Tyree, M.T., and Sperry, J.S. (1989). Vulnerability of xylem to cavitation
and embolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40: 19–36.
doi:10.1146/annurev.pp.40.060189.000315.

Tyree, M.T., Davis, S.D., and Cochard, H. (1994). Biophysical
perspectives of xylem evolution—Is there a tradeoff of hydraulic efficiency
for vulnerability to dysfunction? IAWA J. 15: 335–360.
Zwieniecki, M.A., and Secchi, F. (2012). Getting variable xylem
hydraulic resistance under control: Interplay of structure and
function. Tree Physiol. 32: 1431–1433. doi:10.1093/treephys/
tps121.

Παραδείγματα
Ball, M. (1988). Ecophysiology of mangroves. Trees (Berl.) 2: 129–142.
doi:10.1007/BF00196018.
Becker, P., Meinzer, F.C., and Wullschleger, S.D. (2000). Hydraulic
limitation of tree height: A critique. Funct. Ecol. 14: 4–11. doi:10.1046/
j.1365-2435.2000.00397.x.
Cirelli, D., Jagels, R., and Tyree, M.T. (2008). Toward an improved
model of maple sap exudation: The location and role of osmotic
barriers in sugar maple, butternut and white birch. Tree Physiol. 28:
1145–1155. doi:10.1093/treephys/28.8.1145.
Cramer, M.D. (2012). Unravelling the limits to tree height: A major role
for water and nutrient trade-offs. Oecologia 169: 61–72. doi:10.1007/
s00442-011-2177-8.
Koch, G.W., Sillett, S.C., Jennings, G.M., and Davis, S.D. (2004).
The limits to tree height. Nature 428: 851–854. doi:10.1038/
nature02417.
Milburn, J.A., and O’Malley, P.E.R. (1984). Freeze-induced sap
absorption in Acer pseudoplatanus: A possible mechanism. Can. J.
Bot. 62: 2101–2106. doi:10.1139/b84-285.
Netting, A.G. (2009). Limitations within “the limits to tree height”. Am. J.
Bot. 96: 542–544. doi:10.3732/ajb.0800144.
Niklas, K.J. (2007). Maximum plant height and the biophysical
factors that limit it. Tree Physiol. 27: 433–440. doi:10.1093/treephys/
27.3.433
Ryan, M.G., and Yoder, B.J. (1997). Hydraulic limits to tree height and
tree growth. Bioscience 47: 235–242. doi:10.2307/1313077.
Ryan, M.G., Phillips, N., and Bond, B.J. (2006). The hydraulic limitation
hypothesis revisited. Plant Cell Environ. 29: 367–381. doi:10.1111/
j.1365-3040.2005.01478.x.
Scholander, P.F., Bradstreet, E.D., Hemmingsen, E.A., and Hammel, H.T.
(1965). Sap pressure in vascular plants: Negative hydrostatic pressure
can be measured in plants. Science. 148: 339–346. doi: 10.1126/
science.148.3668.339.
Scholander, P.F., Love, W.E., and Kanwisher, J.W. (1955). The rise of
sap in tall grapevines. Plant Physiol. 30: 93–104. doi:10.1104/
pp.30.2.93.
Scholander, P.F., Hammel, H.T., Hemmingsen, E., and Garey, W.
(1962). Salt balance in mangroves. Plant Physiol. 37: 722–729. doi:10.1104/
pp.37.6.722.
Scholander, P.F., Hammel, H.T., Hemmingsen, E.A., and Bradstreet,
E.D. (1964). Hydrostatic pressure and osmotic potential in leaves of
mangroves and some other plants. Proc. Natl. Acad. Sci. USA 52:
119–125. doi:10.1073/pnas.52.1.119.
Sperry, J.S., Holbrook, N.M., Zimmermann, M.H., and Tyree, M.T.
(1987). Spring filling of xylem vessels in wild grapevine. Plant Physiol.
83: 414–417. doi:10.1104/pp.83.2.414.
Tyree, M.T. (1983). Maple sap uptake, exudation, and pressure changes
correlated with freezing exotherms and thawing endotherms. Plant
Physiol. 73: 277–285. doi:10.1104/pp.73.2.277.
Wegner, L.H. (2014). Root pressure and beyond: energetically uphill
water transport into xylem vessels? J. Exp. Bot., 65: 381–393. doi:
10.1093/jxb/ert391.

Κίνηση του νερού και έλεγχος της διαπνοής
Boyce, C.K., Brodribb, T.J., Feild, T.S., and Zwieniecki, M.A. (2009).
Angiosperm leaf vein evolution was physiologically and environmentally
transformative. Proc. Biol. Sci. 276: 1771–1776. doi:10.1098/
rspb.2008.1919.
Brodribb, T.J., Feild, T.S., and Sack, L. (2010). Viewing leaf structure
and evolution from a hydraulic perspective. Funct. Plant Biol. 37: 488–
498. doi:10.1071/FP10010.
Christmann, A., Grill, E., and Huang, J. (2013). Hydraulic signals in longdistance
signaling. Curr. Opin. Plant Biol. 16: 293–300. doi:10.1016/j.
pbi.2013.02.011.
Cochard, H., Froux, F., Mayr, S., and Coutand, C. (2004). Xylem wall
collapse in water-stressed pine needles. Plant Physiol. 134: 401–408.
doi:10.1104/pp.103.028357.
Dodd, I.C. (2013). Abscisic acid and stomatal closure: A hydraulic
conductance conundrum? New Phytol. 197: 6–8. doi:10.1111/nph.12052.
Johnson, D.M., McCulloh, K.A., Woodruff, D.R., and Meinzer, F.C.
(2012). Evidence for xylem embolism as a primary factor in dehydrationinduced
declines in leaf hydraulic conductance. Plant Cell Environ. 35:
760–769. doi:10.1111/j.1365-3040.2011.02449.x.
Kim, T.-H., Böhmer, M., Hu, H., Nishimura, N., and Schroeder, J.I.
(2010). Guard cell signal transduction network: Advances in understanding
abscisic acid, CO2, and Ca2þ signaling. Annu. Rev. Plant
Biol. 61: 561–591. doi:10.1146/annurev-arplant-042809-112226.
Leegood, R.C. (2008). Roles of the bundle sheath cells in leaves of C3
plants. J. Exp. Bot. 59: 1663–1673. doi:10.1093/jxb/erm335.
Maseda, P.H., and Fernández, R.J. (2006). Stay wet or else: Three
ways in which plants can adjust hydraulically to their environment. J.
Exp. Bot. 57: 3963–3977. doi:10.1093/jxb/erl127.
Pantin, F., Monnet, F., Jannaud, D., Costa, J.M., Renaud, J., Muller,
B., Simonneau, T., and Genty, B. (2013). The dual effect of abscisic
acid on stomata. New Phytol. 197: 65–72. doi:10.1111/nph.12013.
Parent, B., Hachez, C., Redondo, E., Simonneau, T., Chaumont, F.,
and Tardieu, F. (2009). Drought and abscisic acid effects on
aquaporin content translate into changes in hydraulic conductivity
and leaf growth rate: A trans-scale approach. Plant Physiol. 149:
2000–2012. doi:10.1104/pp.108.130682.
Prado, K., and Maurel, C. (2013). Regulation of leaf hydraulics: From
molecular to whole plant levels. Front Plant Sci 4: 255. doi:10.3389/
fpls.2013.00255.
Raven, J.A. (2002). Selection pressures on stomatal evolution. New
Phytol. 153: 371–386. doi:10.1046/j.0028-646X.2001.00334.x.
Sack, L., and Holbrook, N.M. (2006). Leaf hydraulics. Annu. Rev. Plant
Biol. 57: 361–381. doi:10.1146/annurev.arplant.56.032604.144141.
Sack, L., and Scoffoni, C. (2013). Leaf venation: Structure, function,
development, evolution, ecology and applications in the past, present
and future. New Phytol. 198: 983–1000. doi:10.1111/nph.12253.
Shatil-Cohen, A., Attia, Z., and Moshelion, M. (2011). Bundle-sheath
cell regulation of xylem-mesophyll water transport via aquaporins
under drought stress: A target of xylem-borne ABA? Plant J. 67:
72–80. doi:10.1111/j.1365-313X.2011.04576.x.

Ξηρασία 
Allen, C.D., et al. (2010). A global overview of drought and heatinduced
tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage. 259: 660–684. doi:10.1016/j.foreco.2009.09.001.
Anderegg, W.R.L., Berry, J.A., Smith, D.D., Sperry, J.S., Anderegg,
L.D.L., and Field, C.B. (2012). The roles of hydraulic and carbon
stress in a widespread climate-induced forest die-off. Proc. Natl.
Acad. Sci. USA 109: 233–237. doi:10.1073/pnas.1107891109.
Barigah, T.S., Charrier, O., Douris, M., Bonhomme, M., Herbette, S.,
Ame´ glio, T., Fichot, R., Brignolas, F., and Cochard, H. (2013).
Water stress-induced xylem hydraulic failure is a causal factor of tree
mortality in beech and poplar. Annals of Botany. 112: 1431–1437. doi:
10.1093/aob/mct204.
Breshears, D.D., et al. (2005). Regional vegetation die-off in response
to global-change-type drought. Proc. Natl. Acad. Sci. USA 102:
15144–15148. doi:10.1073/pnas.0505734102.
Brodribb, T.J. (2009). Xylem hydraulic physiology: The functional
backbone of terrestrial plant productivity. Plant Sci. 177: 245–251.
doi:10.1016/j.plantsci.2009.06.001.
Brodribb, T.J., and Cochard, H. (2009). Hydraulic failure defines the
recovery and point of death in water-stressed conifers. Plant Physiol.
149: 575–584. doi:10.1104/pp.108.129783.
Choat, B., et al. (2012). Global convergence in the vulnerability of
forests to drought. Nature 491: 752–755.
Food and Agriculture Organization of the United Nations. (2013).
Climate Change Guidelines for Forest Managers. FAO Forestry Paper
No. 172. (Rome: Food and Agriculture Organization of the United
Nations). http://www.fao.org/docrep/018/i3383e/i3383e00.htm.
Hicke, J.A., and Zeppel, M.J.B. (2013). Climate-driven tree mortality:
Insights from the piñon pine die-off in the United States. New Phytol.
200: 301–303. doi:10.1111/nph.12464.
Kozlowski, T.T., and Pallardy, S.G. (2002). Acclimation and adaptive
responses of woody plants to environmental stresses. Bot. Rev. 68:
270–334. doi:10.1663/0006-8101(2002)068[0270:AAAROW]2.0.CO;2.
McDowell, N.G. (2011). Mechanisms linking drought, hydraulics,
carbon metabolism, and vegetation mortality. Plant Physiol. 155:
1051–1059. doi:10.1104/pp.110.170704.
McDowell, N.G., Beerling, D.J., Breshears, D.D., Fisher, R.A., Raffa,
K.F., and Stitt, M. (2011). The interdependence of mechanisms
underlying climate-driven vegetation mortality. Trends Ecol. Evol. 26:
523–532. doi:10.1016/j.tree.2011.06.003.
Sperry, J.S., Hacke, U.G., Oren, R., and Comstock, J.P. (2002). Water
deficits and hydraulic limits to leaf water supply. Plant Cell Environ.
25: 251–263. doi:10.1046/j.0016-8025.2001.00799.x.
Vicente-Serrano, S.M., Gouveia, C., Camarero, J.J., Beguería, S.,
Trigo, R., López-Moreno, J.I., Azorín-Molina, C., Pasho, E.,
Lorenzo-Lacruz, J., Revuelto, J., Morán-Tejeda, E., and Sanchez-
Lorenzo, A. (2013). Response of vegetation to drought time-scales
across global land biomes. Proc. Natl. Acad. Sci. USA 110: 52–57.
doi:10.1073/pnas.1207068110.
Weed, A.S., Ayres, M.P., and Hicke, J.A. (2013). Consequences of
climate change for biotic disturbances in North American forests.
Ecol. Monogr. 83: 441–470. doi:10.1890/13-0160.1.
Zanne, A.E., et al. (2014). Three keys to the radiation of angiosperms
into freezing environments. Nature, in press 10.1038/
nature12872.

Μεθοδολογίες
Balling, A., and Zimmermann, U. (1990). Comparative measurements
of the xylem pressure of Nicotiana plants by means of the pressure
bomb and pressure probe. Planta 182: 325–338. doi:10.1007/
BF02411382.

Brodersen, C.R., Lee, E.F., Choat, B., Jansen, S., Phillips, R.J.,
Shackel, K.A., McElrone, A.J., and Matthews, M.A. (2011).
Automated analysis of three-dimensional xylem networks using
high-resolution computed tomography. New Phytol. 191: 1168–
1179. doi:10.1111/j.1469-8137.2011.03754.x.
Canny, M. (1997). Vessel contents of leaves after excision: A test of
Scholander’s assumption. Am. J. Bot. 84: 1217. doi:10.2307/2446045.
Choat, B., Drayton, W.M., Brodersen, C., Matthews, M.A., Shackel,
K.A., Wada, H., and McElrone, A.J. (2010). Measurement of
vulnerability to water stress-induced cavitation in grapevine: A
comparison of four techniques applied to a long-vesseled species.
Plant Cell Environ. 33: 1502–1512.
Cochard, H. (2002). A technique for measuring xylem hydraulic
conductance under high negative pressures. Plant Cell Environ. 25:
815–819. doi:10.1046/j.1365-3040.2002.00863.x.
Cochard, H., Badel, E., Herbette, S., Delzon, S., Choat, B., and Jansen,
S. (2013). Methods for measuring plant vulnerability to cavitation: A critical
review. J. Exp. Bot. 64: 4779–4791. doi:10.1093/jxb/ert193.
Crombie, D., Hipkins, M., and Milburn, J. (1985). Gas penetration of pit
membranes in the xylem of Rhododendron as the cause of acoustically
detectable sap cavitation. Funct. Plant Biol. 12: 445–453.
Holbrook, N.M., Burns, M.J., and Fields, C.B. (1995). Negative
xylem pressures in plants: A test of the balancing pressure
technique. Science 270: 1193–1194. doi:10.1126/science.270.
5239.1193.
McElrone, A.J., Choat, B., Parkinson, D.Y., MacDowell, A.A., and
Brodersen, C.R. (2013). Using high resolution computed tomography
to visualize the three dimensional structure and function of plant
vasculature. J. Vis. Exp. 74: e50162 10.3791/50162.
Moshelion, M., Moran, N., and Chaumont, F. (2004). Dynamic
changes in the osmotic water permeability of protoplast plasma
membrane. Plant Physiol. 135: 2301–2317. doi:10.1104/pp.104.043000.
Ramahaleo, T., Morillon, R., Alexandre, J., and Lassalles, J.-P. (1999).
Osmotic water permeability of isolated protoplasts. Modifications during
development. Plant Physiol. 119: 885–896. doi:10.1104/pp.119.3.885.

Ritman, K.T., and Milburn, J.A. (1988). Acoustic emissions from plants:
Ultrasonic and audible compared. J. Exp. Bot. 39: 1237–1248.
doi:10.1093/jxb/39.9.1237.
Sperry, J. (2013). Cutting-edge research or cutting-edge artefact? An
overdue control experiment complicates the xylem refilling story.
Plant Cell Environ. 36: 1916–1918.
Sperry, J.S. (1986). Relationship of xylem embolism to xylem pressure
potential, stomatal closure, and shoot morphology in the palm Rhapis
excelsa. Plant Physiol. 80: 110–116. doi:10.1104/pp.80.1.110.
Stuppy, W.H., Maisano, J.A., Colbert, M.W., Rudall, P.J., and Rowe,
T.B. (2003). Three-dimensional analysis of plant structure using highresolution
x-ray computed tomography. Trends Plant Sci. 8: 2–6.
doi:10.1016/S1360-1385(02)00004-3.
Tyree, M.T., and Hammel, H.T. (1972). The measurement of the turgor
pressure and the water relations of plants by the pressure-bomb
technique. J. Exp. Bot. 23: 267–282. doi:10.1093/jxb/23.1.267.
Tyree, M.T., Patiño, S., Bennink, J., and Alexander, J. (1995).
Dynamic measurements of roots hydraulic conductance using
a high-pressure flowmeter in the laboratory and field. J. Exp. Bot.
46: 83–94. doi:10.1093/jxb/46.1.83.
Tyree, M.T., Yang, S., Cruiziat, P., and Sinclair, B. (1994). Novel
methods of measuring hydraulic conductivity of tree root systems and
interpretation using AMAIZED (a maize-root dynamic model for water
and solute transport). Plant Physiol. 104: 189–199.
Vandegehuchte, M.W., and Steppe, K. (2013). Sap-flux density
measurement methods: Working principles and applicability. Funct.
Plant Biol. 40: 213–223. doi:10.1071/FP12233.
Wei, C., Tyree, M.T., and Steudle, E. (1999). Direct measurement of
xylem pressure in leaves of intact maize plants. A test of the cohesiontension
theory taking hydraulic architecture into consideration. Plant
Physiol. 121: 1191–1206. doi:10.1104/pp.121.4.1191.
Wheeler, J.K., Huggett, B.A., Tofte, A.N., Rockwell, F.E., and
Holbrook, N.M. (2013). Cutting xylem under tension or supersaturated
with gas can generate PLC and the appearance of rapid
recovery from embolism. Plant Cell Environ. 36: 1938–1949.